University of Al-Anbar College of Pharmacy

Department of Pharmaceutical Chemistry

Title of the course: Advanced Pharmaceutical Analyses Course number: 5210

Level: 5th Class, 2nd Semester

Credit hours: Theory 3 hours Laboratory 1 hour

Tutors:

Reference text: 1. Spectrometric Identification of Organic Compounds by Silverstein, Bassler and Morrill; Latest edition. 2. Applications of absorption spectroscopy of organic compounds by Dyer JR; Latest edition. 3. Organic Chemistry by McMurry; Thomason learning CA, USA; Latest edition.

<u>Objectives</u>: To study spectrometric methods used for identification and characterization of organic compounds, including UV, IR, MASS and NMR spectroscopy; it enables students to understand the applications of these techniques for qualitative and quantitative analysis of organic compounds.

No	Lecture title	hours
1.	UV / visible spectroscopy; Sample handling and instrumentation;	10
	Characteristic absorption of organic compounds; Rules for calculation	
	of lambda max and application; Application of UV/visible;	
	spectroscopy; Problems and solutions.	
2.	Infra Red spectroscopy (theory and H-bonding effect; Sampling	14
	techniques and interpretation of spectra; Characteristic group	
	frequencies of organic compounds; Application of IR spectroscopy;	
	Problems and solutions.	
3.	H ¹ –Nucleomagnetic Resonance (NMR) and C ¹³ -NMR spectroscopy;	12
	Introduction, the nature of NMR absorption, chemical shifts and factors	
	affecting them, information obtained from NMR spectra, more complex	
	spin-spin splitting patterns, application of H ¹ -NMR spectroscopy;	
	C ¹³ -NMR spectroscopy: introduction and characteristics, DEPT C ¹³ -	
	NMR spectroscopy.	
4.	Mass spectroscopy: Introduction and interpreting Mass spectra;	9
	interpreting Mass spectra fragmentation patterns, Mass behavior of	
	some common functional groups.	